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1 Introduction

Nematic liquid crystals (NLC) are sensitive to the external magnetic and electric field. One of the well known
phenomenon is Freedericksz’s transition. Figure 1 shows the schematic of the Freedericksz transition. The NLC
is confined between two plates which induce strong planar anchoring. Initially, the director n is parallel to the
e,. The system is then probed with magnetic or electric field. For a weak electric field E the director is not
distorted and hence remains parallel to the x—axis. However, when a strong electric field which is greater than
the threshold electric field E; is applied then the director rotates by an angle 6 in the z — y plane. Similarly,
if the diamagnetic anisotropy of the of the NLC is positive, then the director rotates in the x — y plane on the
application of sufficiently strong magnetic field. This is also celled splay-Freedericksz distortion.

[Lonberg and Meyer, 1985] observed a new type of transition for NLC composed of very long particles. They
found that the distortion of director is not uniform but a periodic splay-twist distortion (see Fig. 2). This
happens for materials in which the splay elastic constant K7 is much bigger than the twist elastic constant K5
and hence periodic distortion will have lower free energy than the uniform distortion since it avoids splay. They
showed that for periodic splay-twist distortion to have lower free energy, the inequality r < r., where r = Ko/ K}
and r. = 0.303, must hold. [Miraldi et al., 1986] further generalized the result for the weak anchoring. They
showed that r. may be changed over a wide range by controlling the surface conditions and sample thickness.
[Lavrentovich and Pergamenshchik, 1990] obtained a periodic distortion even in the absence of external fields
in thin hybrid nematic layers. A hybrid nematic layer has the easy axis (preferred direction of director) tangent
to the lower surface (planar anchoring) and nearly normal at the free upper surface (homeotropic anchoring).
The periodic structure was formed because the boundary conditions on the layer surfaces were different and
degenerated. The stability analysis revealed that the critical condition for periodic distortion depended on
saddle-splay elastic constant K. [Sparavigna et al., 1991] also investigated the ocurrence of periodic stripes in
the hybrid nematic layers with planar anchoring stronger than the homeotropic anchoring. For the thickness
d lower than the critical thickness d,, since the planar anchoring is strong, the director assumes a uniform
distribution. For d > d,, the uniform state is replaced by a hybrid aperiodic alignment (HAN) or a periodic
deformed structure (PHAN). [Sparavigna et al., 1994] studied the PHAN-HAN transition for an elastic isotopic
nematics (K; = Ky = K3 = K) in the absence of an external field. They showed that PHAN arises at a critical
thickness d,, < d, for wide range of Kj.

The transitions described above are of second order and thus they can be predicted by conducting the
local stability analysis of the elastic free-energy functional . This has usually been done in two ways in the

literature. First way is to do the linear stability analysis of the Euler-Lagrange equation of . The second



way is to calculate the second variation 62F and then explore the sign of §2F near ground state (the state in
which the director is uniform). The director n is represented in a way such that the constraint on its length

is automatically satisfied (n = (sin @ cos ¢, sin0sin ¢, cosf), where 6 is the angle between n and z axis and
¢ = arctan(ng/ny)).

Both these methods have some limitations. The first one can accurately determine the transition condition
but can’t determine whether the the transition is periodic or not. The second method introduces approximations
such as the wave number of the perturbing modes are small and hence is not general. Therefore, we use a
third approach. Calculating the second variation of §2F is not a trivial task. First because finding an exact
expression of §2F requires long computation and second difficulty is in determining whether the expression
is positive definite or not. Our general procedure is as follows: (i) n is perturbed by keeping the constraint
|n| = 1 valid upto 2nd order and (ii) the sign of 62F is computed by finding the least eigen value of a linear
problem. The advantages of this method are illustrated in [Rosso et al., 2004].

2 The variational formulation

2.1 Total free energy

Total free energy of the NLC contains both the bulk free energy and the surface free energy. The Frank
expression for the elastic energy density of deformed NLC in the bulk is given by

f= % {K1(V.n)® + K2(n.V x n)* + K3(n x V xn)’} — (K> + K4)V- (nV-n+n x V x n), (1)

where K1, K5, K3 and (K3 + K4) are called splay, twist, bend and saddle-splay elastic constants, respectively
[Barbero and Evangelista, 2006]. The last term contributes only through the surface owing to the divergence

theorem and the energy associated with it is called surfacelike. This term can further be simplified as
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The director n is a unit vector hence,

differentiating, n; n; =0

differentiating again, M4,5iM + 14 i = 0. (3)
Also,

(Vn)? = VnVn = (n; je; ® €;)(npex ® ) = n; pnije; @ €;

— tr((Vn)2) = M N, (4)
where tr is the trace of a tensor. Substituting (3) and (4) in (2), we obtain

V-(@mV-n+nxVxn)=(V-n)—tr((Vn)?), (5)



which when substituted in (1), yeilds
frrank = % {Ki(Van)® + K2(n.V xn)® + K3(n x V x n)*} + (K3 + Kq)(tr((Vn)?) = (V-n)?).  (6)
The elastic energy due to twist can also be simplified further as
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Similarly the bend energy can be simplified as
2 2 2
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Substituting (7) and (8) in (6), we get the final form of the frank free energy density

ol {Kl(v.n)2 + K, (IVHI2 - tr((vn)2)> + (K3 — K2)|(Vn>n!2} + (K + Ka) (”((V”)Q) - (V- ")2)-

2
(9)
In the absence of any external field, the bulk free energy of NLC is given by

Fb ::/deV, (10)

where B is the region occupied by the NLC.

Apart from the bulk energy which depends on the molecular shape and on the molecular interactions, NLC
also interacts with the surface and hence has surface energy F,. The anchoring is defined as the phenomenon
of orientation of liquid crystal by the surface. The anchoring direction or easy direction is the direction of
spontaneous orientation of n on the surface. The anchoring energy F, is taken to be in the form

Fa ::/ g(n)dA:/ n - AndA, (11)
oB B

where A is symmetric second rank tensor which for simplicity is assumed to be piecewise constant on 05. The

total free energy therefore is the summation of bulk and anchoring energy,

F[B] = F[B] + F,[08]. (12)

2.2 First variation

Making the first variation of F go to zero, we can get the Euler-Lagrange equation for F, which will give us
the equilibrium conditions for n. Our goal is to do the stability analysis of this extremal for which we will
need the second variation of F. Let us consider the variation of n of the form

n.(x) :=n+ep(x) + e’ (x) (13)



such that n. - n. =1+ O(e2). This condition on substitution of (13) gives,
n.n.=14+0E%)=14+ep-n+e2¢p-p+e2Y-n+ 0,
and hence gives these two extra conditions,
¢ -n=0, (14)
and w-n:—%gb-d). (15)

It can be seen from (15) that taking second order variation ¥ = 0, will result in ¢ = 0, and thus for attaining the
required accuracy on the constraint, we need to retain both the term. Alternatively, if the director is represented
by the two angles as mentioned in the previous section, then the constraint is automatically satisfied. A second
method that is found in the literature is
n+co
n,=———. (16)
|n + |

This when simplified and expanded for small £ becomes,
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Now, if we assume condition (14) holds then,
ne=ntep—cti (g o)n+ O
n. =n+ep+ e + 0O(?) (18)
where, 1/)-71:7%(75-(#.

Thus these two representation are equivalent if restricted to second order accuracy and conditions (14) and
(15) are satisfied.

Using, (13), we can express Vn. as,
Vn. =Vn+eVe +2Vy (19)

The first variation of the functional F can be calculated as,
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The first variation §F can be further simplified using the following relation for an arbitrary tensor T' and

arbitrary vector a

Oa; 0 0
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Substituting the above relation in (21) gives
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Using the divergence theorem, the above equation can be written in two parts as
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where
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(22)

(23)

(24)

and NN is the outward unit normal. To calculate p and g, we can use the form of free energy given by equation

(9) and (11). To simplify the expressions further, we will need the following results
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These results combined with the bulk energy density (9), gives

g—fb =2(K3 — K2)(Vn)T (Vn)n
0
Bvifn = (2K1(V -n) +2K,Vn — 2K,VnT +2(K3 — Ky)Vn(n@n) + (Ko + K4)(2VnT —2(V - n)I))
(26)
Taking divergence of terms in (26), separately, we get the following identities
AV (V . nI) =V- (’I‘Lk7k51j6i X e]') = (nhk&jei)j = (n;ﬁkei),i = V(V . n)
V- (Vn)=V?n
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Thus, using the results (26) and (27) in (24), we obtain

_of g 9
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= 2{([(3 — K3)(Vn)T(Vn)n — K1V(V -n) — K, (Vzn -V(V- n)) — (K3 — K>) (V((Vn)n)n +V- n(Vn)’n) }

= 2{([(2 — K))V(V-n) — K2V + (K3 — Ky) <(Vn)T(Vn)n - V({(Vn)n)n -V - n(Vn)n) } (28)

The saddle-splay constant K, vanishes from the above equation and hence doesn’t appear in the equilibrium
equations. However, it may appear in the natural boundary conditions. Similarly, the integrand q using
(24),(25) and (26) simplifies to

GfN 0g

1= vn" " on
= <2K1(V -n) +2K,Vn — 2K,VnT +2(K3 — K2)Vn(n@n) + (Ko + Ky)(2Vn' —2(V - n)I))N +2An

= 2{ (Kl(V n)N + K, <(Vn) - VnT> N + (K3 — Ks)(n - N)(Vn)n + (Ky + Ky) (VnT — (V- n)I> N + An}.

(29)

If n is an extremal of F, then the variation §F given by (23) is zero and hence from the condition (14), we
have

p=2\n on B (30)

and qg=2\n on 0B, (31)

where A\, and A; are Lagrange multipliers. The Lagrange multipliers appearing in the problem is due to

constraint n - n = 1. The equation (30) is the Euler-Lagrange equation,
(Ky — K1)V(V-n) — K;V2n 4 (K3 — Ky) <(Vn)T(vn)n - V({(Vn)n)n -V - n(vn)n> =\n. (32
For the special case of isotropy K7 = Ko = K3 = K, the above equation simplifies to

Vin=-"n, (33)



3D Poisson’s equation. The (31) is the natural boundary condition,

(Kl(V~n)N+K2 <Vn) VnT>N+(K3 —Ky)(n - N)(Vn)n+ (K +Ky) <VnT (V~n)I)N+An = \sn,
(34)

which for the special case of the isotropy and K, = 0, simplifies to
K(Vn)N = (M\sI — A)n. (35)

For a uniform n to satisfy the equations (33) and (35), the conditions required are (i) A, = 0 and (ii) A has to
spherical such that \; = 1/3tr(A). The saddle-splay constant K, appears only from the boundary condition
and hence instability criterion dependent on K4 is surface driven. The condition (15) doesn’t come into picture
in the first variation since O(e?) terms don’t play any role in the first variation.

2.3 The second variation

To compute the stability of solutions given by the (32) and (34), we need to calculate the second variation of
F,

&2 F 2 2
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€ e=0

Expressions for p; and ¢; can further be simplified separately by using chain rule for differentiation and

substituting extremum condition (30) and (31). The expression for p; becomes

pi(n.Vn, .V, . Vep)) = 8225% Mo (§+209) + W‘igﬂg VR (420 4 2887sz et
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_f ’f of *f of
=55 .¢®¢>+2avn8n.(v¢)-¢+28n-¢+7avwvn.(V¢) (V¢)+2— V.

0 0 o2 0? 0?

(f bt f v¢>+anafn:¢>®¢+28an;”:(v¢)-¢+av”§Vn:(V¢):(V¢> (38)

First term in the above equation is linear in the variation 1 and is similar to the integrand of the volume
integral in (21) (replacing ¢ with ). Therefore, it can also be simplified using the divergence relation (22).
To avoid the repetition, we skip this derivation. All other terms in (38) are of quadratic order. Therefore, we

can represent the above equation by separating linear and quadratic term as

D1 (TL, vna ¢a v¢7 17[)5 V'l,b) = lp(na vna 17[)3 V’l?b) + Qp(na VTL, ¢7 v¢)a (39)

where

ly(n, Vn¢V¢)—2<8f 1/J—|—i Vzb)

and
0% f 0% f 0% f
Qp(n,Vn, ¢, Vo) = o PR P+ 2 omin (Vo) ¢+ Nnovn - (Vo) : (Vo). (40)
Similarly the integrand ¢; of the surface integral becomes,
0%g dn. dg
R A
&%g Jg
= Gnom; (G TV @2 25|
&g g
- On.on, POO+ 2877,5 e (41)
which again when separated in linear and quadratic form becomes
Q1(n,¢,’¢) = lq(na’l/}) +Qq(n7¢)7 (42)
where 5 o2
_ 9 . _ g .
lq (n7 ¢) - Qans 1/1 a‘nd Qq (n7 ¢) 8”5877,5 . ¢ ® d) (43)

Therefore, the second variation 6°F can now be written as

52}":/lp(n,Vn,¢,V'¢)dV+/ lq(n,'zp)dA—l—/Qp(n,Vn,¢,V¢)dV+/ Qq(n, @)dA. (44)
B oB B oB

As mentioned earlier, the linear term in the above equation matches exactly with the first variation (21) if we

replace ¢ with 1. Therefore, following the similar procedure, we obtain

62f:2{/p(n, Vn)~1/)dV+/ q(mVn)-t,bdA}—&—/Qp(n,Vn, o, Vd))dV—i—/ Qq(n, p)dA.  (45)
B oB B oB

Note that the factor of 2 is missing in [Rosso et al., 2004]. Also, the quadratic term @4 in [Rosso et al., 2004]
depends on V¢ and Vn, which can be achieved by using divergence theorem in the third term of the equation.
The exact expressions for p and ¢ are given in (28) and (29). Also, since the second variation is calculated on
the extremals, we can substitute (30) and (31) in the above equation to get

2 _ . .
5 ]-'—4{/6/\vn 1/:dV+/aB)\Sn wdA}—I—/BQp(n,qu&,Vd))dV—&-/aBQq(n, #)dA. (46)



which on the application of constraint (15), becomes

2 2 2
§2F = 2{/BAU|¢| dV+/88)\S|¢| dA}+/BQp(n,Vn,cﬁ,ng)dV+/86Qq(n,¢)dA. (47)

The term inside the curly braces is negative if both the Lagrange multipliers are negative and hence the first
term will be positive. However, to compute the sign of 62F, we still need to resolve the sign of quadratic terms.
Also, note that the quadratic terms @, and @}, does not depend on the second variation ¥ of n and hence
the second variation of F can be expressed in the term of ¢ only. The use of divergence identity (22) in the

expression for @, ,(40), gives

non ovVnon oOVnovVn
2
— V- (M (V¢)>- (48)

2 2 2 T
Quln Vn.6.59) = 1 000+ 250 -<V¢>-¢+V'{<M'<V¢>) ¢>}

ovnovVn :

By using the divergence theorem in the quadratic part of §2F, we get

/ Qy(n, Vi, ¢, V)dV + / Qu(n, )dA = / Qb(n, V. b, V)V + / Qu(n, Vn, . Vé)dA,  (49)
B oB B oB

where

2 2 2
Qu(n, V. §,V9) = o :¢>®¢+¢>-{2 o <V¢>—V-(M:<V¢>)}

non ovVnon : ovVnovVn
and
_ g *f
Qu(n,Vn,¢, Vo) = anom. PR P+ { ((M@Vn : (V¢))N} - . (50)

Lets first look at the quadratic term @y of the volume integral. We will require the results of the (25)-(27) for

simplification. From the first equation in (26), we have

of _

_ T
pr 2(K3 — K2)(Vn)* (Vn)n (51)
Differentiating w.r.t n, we get
0% f 9 T
prey e 2(K3 — Kg)%(Vn) (Vn)n. (52)

Again using (51) and differentiating w.r.t to Vn, we obtain

9? )
BVnJ;n =2(K3 — Kz)av—n(Vn)T(Vn)n (53)

Similarly, from the second equation in the (26), we have

0
g = (20T )T 4 2KV = 2KV 4 2(0 — KoV ) + (Ko + K) (29T = 2V - m)) ),
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Differentiating the above expression with respect to Vn, we get
*f B) 9 9
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Each term in the above equations can be simplified as shown below

0 0
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By substituting the results of (56) in (52),(53) and (55), we obtain
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ovVnon 3 2)(niinie; © €; © e +nj jnie; © e; © e;)
B Kieime me me; 2o me; @ e ®e; - 2e; B e;® e D e
OVnovn e T E e 26 ® €; © € V€, e, Re; ®e; Qe+
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Finally substituting these second order derivatives of f in (50),, we get the the quadratic function @Q; as

Qb(n, Vn, ¢, Vq5) = 2(K3 — KQ){(VTL)T(V’I’E) : ¢ ® ¢ + 2(ni7mlej ® e; &® ej + n,-7jnlej X €; ® el) : (qu) . ¢}
_2V {(Klei(@ei@ej®ej+K2(ei®ej®ei®ej —ej®ei®ei®ej)+

(Kg - Kg)njnmei Re,Re X €; + (K2 —+ K4)(€j XRe e; R €; — € X e; R €; X 6j)> : V(;S} . ¢

(58)

The expression of @ includes fourth order tensors. They are separately evaluated below

(V)T (Vn) : ¢ @ ¢ = niinkj€; @ € : Qrdomer @ em = g inge jO1dmOidjm = Np.ing jGid;
= ik, ;05 = (Vn)é - (Vn)é = |(Vn)g|?,

(nine; @e; ®ej+n;ne; Qe e): (Vo) o= (n,me; ®e;, @ej +n;jne; Qe ey : ompem e, @
= (@i jnian + digng jn)e; -

- (<v¢>T<Vn>n n <Vn>T<v¢>n) ¢
— (Vn)n- (Vé)é + (Vo)n - (Vn)o

V~((ei®ei®ej®ej):v¢>~¢=V- ((€i®€i®ej®ej)1¢k,l€k®€z)'¢

=V. <6i ® €i¢k,k> = Op kit = (PrrPi)i — Prpdii =V - ((V ‘ ¢)¢> —(V-9)?
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V'{(ei@)ej‘@ei@ej€j®ei®ei®ej):v¢}'¢

V-{(ei®ej®ei®ej—ej®ei®ei®ej):¢k,zek®ez}-¢

V- (¢rier @ e — drrer @ep) b= drudr — duidr
= (Pr10k) 1 — Ok 1Ok, — (P1EPk) 1 + O kDR,

v. ((V¢>T¢ - (V¢>¢) ~|Vol? +tr<(v¢)2>

V-njnme; ®en,®@e; e : Vo) - p=V-(njnme; ®e, e, De;: dyepep) - @
=V (nnmoijei ®en) - ¢ = (njnmdi;)mdi
= (N3 j0i),m — (NjNm®i ;di.m)

=7 ((Vén-on) - (Vo). (Vo

V~{<6j®€i®€i®€j—el‘®ei®e]‘®€j)> :V¢}.¢
:V'{(ej®ei®ei®€j_ei®ei®6j®6j)> :¢k,lek®el}-¢
=V {<¢k,lel®€k —¢k,k6i®€i>} “ P = PP — Pr it =0

(59)

Substituting the above calculations in (58), we obtain the final form of the quadratic term @, as
Qv(n,Vn, ¢, Vo) = 2(K; — K2){|(Vn)¢|2 +2(Vn)n - (Vo) +2(Vo)n - (Vn)p — V- <(V¢)n : ¢n>

(Ve <v¢>n} - 2{K1 (v (v-000) = (702 ) + 17 (V0170 - (V@1o) ~ V02 + 0r (Vo)) ) }
(60)

The second variation as written in (47) consists of two quadratic terms one due to volume integral and other
one due to surface integral. These quadratic terms are rearranged in (49) using divergence theorem. The

volume integral in (49) on substitution of above expression becomes

Q= / Qu(n, V. b, V)dV
B
2 [ (V-0 + K2{|v¢2 - tr((%)?) } (K- K2>{|<Vn>¢2 L 2AVn)n - (V)é

L o(Ven - (Vn)p+ <v¢>n|2} v {<K3 - K) (Vo gn ) + K1 (V2906 ) + Ka ((V0)70 - (V)0 ) }dv

(61)

11



which on using the divergence relation simplifies to
=2 /5 Ki(V-¢)* + K2{|V¢2 —tr ((V¢)2> } + (K5 — Kz){Q(Vn)n (Vo) +|(Vo)n + (Vn)¢|2}dV

- {(K3 K2>(<v¢>n - ¢<n-N>) LKAV -$)(¢- N) K2(<v¢>T¢‘N+ <v¢>¢~N) }dA (62)
oB

Similarly the second quadratic term (), in the second variation can be simplified. Using the last result of
(25), we calculate

0%g 0

which along with (57) when substituted in (50) gives

Qu(n,Vn,p, Vo) =2A¢ - ¢+ {(2K16Z‘ e, Re;j®e; +2Kre;®e; Qe Qe —2Kre; ®e; ®e; ®ejt+

2(K3 — Kg)njnmei XRe,Re R €; + 2(K2 + K4)(€j Xe Re; R €; —¢€; ®Re; R €; ® ej)) : <v¢)>N} . d)
(64)
Simplifying the terms of the above equation separately we get,
((ei ®€i ® 6]' ®€j) . Vd))N . d) = qﬁj,]—(ei (024 eZ)N . d) = (V . d))(N . d))
((ei Re; e, ®e; —2Kre; Qe ®e; @ej): V )N d=0¢;;(e;,0e;)N-¢d—¢;,(e;je,)N - ¢
=(VO)N-¢—(V¢)'N-¢=(Ve)'¢-N - (Vp)p- N
(njnmei Re,®e Re;:V )N ¢ = ¢i jninm(e; @en)N + d = ¢; jnjn,Np(e; - P)
=(Voé)n-é(n-N)
((ej Re,Re; Ve —e; Ve, Ve; De;j): V¢)N ¢ = (¢ije; e, —¢jie;De,)N - ¢
— (VN6 (V- 4N -6 = (Voo (V- 9)) - N
(65)

Substituting, the above results in (64) we get the final form of Q,. Using this expression in the surface integral

of quadratic part of second variation (49), we get
Q2 = Qu(n,Vn,d,Vp)dV
o8
=2 [ 499+ (Ko 1) (VoI 9ln - N)) + K1 (T 90 N) - Ka (V070 N + (V) N )
+ Ko+ K0)((V0)0 - (V- 9)9) - Nia (66)
Adding (62) and (66) gives us the quadratic part of the second variation
Q=Q1+Q2=2 /B Ki(V-¢)* + K2{|V¢|2 - tr((V¢>2) } + (K3 — K2>{2(Vn>n (V@) + |(Ve)n + (Vn)¢|2}dv
w2 [ (Kot K0 (V010 - (V- 0)0) - N+ Ao g (67)
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Adding the linear part to it as in (47), we get the second variation of F
FF=G= 2/ Ki(V-¢)* + K2{|V¢>|2 —tr <(V¢)2> } + (K5 — KQ){2(Vn)n- (Vo)o +[(Vo)n + (Vn)¢|2}
B

- ngglav 2 [ (et K4>(<v¢>¢— (v ¢>¢) N+ Ad- bAoA (68)

The expression for G matches with that of [Rosso et al., 2004] except for the factor of 2. For the equilibrium
configuration to be stable the sufficient condition is that the second variation 62F or equivalently G is positive
subject to the constriant (14). Hence, the minimum value of G should be positive for all ¢. The problem can
now be posed in the form of finding ¢ for which the G has the minima. Hence, we will be required to find the
first variation of G.

2.4 The first variation of G
Using the classical reasoning [Courant and Hilbert, 1989], we will minimze G on a unit sphere
/ |2V = 1. (69)
B

This variational problem is known as secondary variational problem. The constraint functional for this problem
can be written as

G(¢) = G(d) — /B B2dV, (70)

where p is the Lagrange multiplier. For finding the first variation of G, we will follow the same procedure as

discussed in Sec. 2.2. Replacing n by ¢ and introducing only the first variation of ¢, we get

¢ =P +eC (71)

The first variation of the functional G can be calculated as,

- d -
0G = %G(QS@V(;SE)

d -
=i [ Feveaw

d/ N
+ = b.,Vp.)dA
= E)Bg( )

e=0

where
f(¢. Vo) = 2{K1(V -9)? + Kz{V¢|2 - tr((%)z)} + (K3 — Kz){2(Vn)n- (Vo) + |(Vo)n + (Vn)¢2}

- )‘v|¢|2} - N|¢|2

and
9(p, Vo) = 2{(K2 + Ky) ((V¢)¢ - (V- ¢)¢) "N+ A¢p-¢p— /\s|¢|2}' (72)

Unlike the case of F, where the surface integral depends only on n, the surface integral in G also depends on

V¢. However, the following observation can eliminate the dependence of g on V¢

/BB ((V¢)¢> — (V- ¢>)¢) -NdA = /Bv. ((v¢)¢ (V- ¢)¢>>dV

AL ((V¢)¢) v ((v ~ ¢>¢)dv
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- /B (61,365).i — (@,m),j)d‘/
= /Bd?z',jiqf?j + ¢ij)Pjirt — Piijdi — ¢v:,z'¢j,j)> av

= /Btr<(V¢)2> — (V-¢>2dV.

Therefore, we can rewrite G as

. d _
6 = 5 [ Fo. vy

d
— [ g A
+ o /a Bg(cbg)d

e=0 e=0

where

f(6,Ve) = 2{Kl<v p) +K2{V¢|2 - tr(<v¢>2)} (K- K2>{2(Vn>n- (V)b + |(Vb)m + <Vn>¢2}

— Mo|@)? + (K + Ky)

RS

tr((Ve)?) — (V- ¢>)2) } — pl ¢l

and
() = 2{A¢ - AS|¢|2}-
Following the procedure discussed in 2.2, we find

. d _
G =% [ f@o. o av

d/ -
o ¢ Jos (@)

e=0

_ [ Of dé.  Of  dVe. 05 de.
= Jsoe, @ ove. a VT soe ae |,
of of 9§ 9§
= -+ :VEdV + -+ —— :V(dA
206, ¢t ave VNt Jsoe. ¢t ave, VM|,
of of dg
= [ e I iveav+ [ D caa,
50 Ctaveg VeV | ag C

which on the use of divergence relation in (21) yields

~ ~ T ~
- [ Of of of 99
6= [ 55+ (avg €) ¥ gugt [, g o4

- - LT
_ of o Of . (9F 99
‘/B<a¢ v aw) ¢rv (aVn C)dw 5 06 %4

and finally using the divergence theorem, the above equation can be written in two parts as
S of of > < of 39)
5G:/(—V- -dV+/ — N+ —=]-¢dA
s\ag " ove) T [ \ave™ T oe) ¢
— [#(6.99)-cav + [ a(6.99)-ci
B oB
where

and q(p, Vo) = iN + @

of of
Vive T 9Ve o

(74)

(75)

(76)

(77)

To simplify further, we need the expressions for 0f /O0¢ and 0 f /OV . Note that many terms in (74), are
similar to (9) if we replace n with ¢. Hence the results of (25) and (27) will be useful. Following additional

14



results will be required to simplify new terms in (74)

0

w{(Vn)n ' (V¢>)¢} = (V¢)"(Vn)n

0
spl(Tom 4 (Tno = (1ol + [(Vm)of + 2Te)n - (T)s ) =2( (V)T (Tn)g + (V)T (Va)n
% (Vn)n } = ({win(ni,k”k@,j(bj)el ® em = 0i10imNENi kP€ @ €y = NEN; 106 ej =Vnn @ ¢
suglToIm + (Tme = 50 (Tl + (Tmgf + 2ATg)n - (Vm)o )
= ai’j <¢k,znl¢k,mnm + 2¢k,mmk,m¢m> e;®e;

= (6ik 01 P, mTm + GikGjmMu P 1Tom + 205,011k, mOm ) €i © €;
= (nj¢i,mnﬁb + nl¢i,l”j + 2njni,m¢m)ei K e;
= 2(njPi,mNm + NN mPm)e; @ €;

=2(Ven+Vno)@n (78)

Using (25),(27) and the above results we get the derivatives of f as,

% = 4(K3 — K) ((W))T(Vn)n +(Vn)"(Vn)o + (Vn)T(V¢)n> —Ad =200
aavjqb <2K1(V @)I + 2KV — 2K, VT + 4(K3 — Ks) (Vn(n ® @)+ (Von +Vng) @ ")

+ (K + Ky4)(2Ve" —2(V - ¢>>I>)

95
56 = 2<A¢ - 2)\5¢> (79)

The expression (27), can be written in a general form for any three vectors a, b, ¢ as
V- (Va(b ® c)) =V - (aije; @ e;bcrer @ ep)

=V- (ai7jbjclei [029] e[)

= (ai}jbjcl),lei

= aijibjcie; + a; jbjicie; + a; jbjce;
= (ai,jlbj + a7;7jbj7l)cleq; + aivjbjcuei
= (a;i ;b)) 1ci€i + aijbjcrie;

— V((Va)b)e + V - ¢(Va)b. (80)
Using in the above identity, we obtain following useful expressions
V- (Tn(n e 6)) = V(Tnno + V- 9(Tnn
V- (Totmem) = V(TEmn V- n(Ton

V- (Vn(qb ® n)) =V(Vn)pn+V - -n(Vn)o (81)
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Finally substituting (79) in (77) and using (81), we obtain
P(¢, Vo) = 2(K3 — K>) <<V¢>T(Vn>n +(Vn)"(Vn)é + (Vn>T<V¢>n> — 4N — 2u¢p — 2K, V(V - ¢)—

2K, (v2¢> - V(V- ¢)> —4(K5 — K>) (V((Vn)¢)n +V-n(Vn)p+ V((Vo)n)n+V -n(Vo)n
+V({(Vn)n)p+V - qb(Vn)n) }
= 2{(1{2 — K|)V(V-9) — K2 V2¢ + 2(K3 — K>) <(V¢)T(Vn)n + (V)T (Vn)p + (Vn)T (Vo)n

- V((Vr)n)¢ =V - ¢(Vn)n — [V((Vn)9) + V((Ve)n)ln — V- n[(Vé)n + (Vn)¢]) =2\ — ud)}
(82)

and

q(¢p, Vo) = <2K1(V P + 2K,V — 2K,V + 4(K3 — Ko) (Vn(n ® o)+ (Von+ Vno) ® n)

(Ko + K)2V6T — 2T $)1) | N +2(40 ~ 20.0)
- 2{K1(V BN + Kao(Vop— VO )N + 2(K;5 — Kz) (Vnn(d) "N) + (Vén + Vng)n - N)

+ (K2 + Ki)(VO'N — (V- ¢)N) + (A¢ — 2x\s¢)} (83)

The expression for p in [Rosso et al., 2004] differs from (82) since it has one term (V)T (Vn)n missing and
a factor of 2 missing. Also, the expression for g in [Rosso et al., 2004] differs from (83) since it has two terms
(Vén + Vne)n - N missing and a factor of 2 missing. At extremum 8G should be zero. Also, from (14), we
have

therefore the Euler-Lagrange equation becomes

p(¢, Vo) =vyn (85)

and natural boundary condition becomes

q(¢, Vo) = vsn, (86)

where v, and v, are new Lagrange multipliers. The eigen value problem (85) and (86) and the minima of G are
closely related. The minimum value attained by G on the manifold (69) is equal to the minimum eigen value
Lmin for which there is a solution to these equations [Rosso et al., 2004],[Courant and Hilbert, 1989, pp.399].
This implies that the director field is locally stable whenever the minimum eigen value fi,,;, of (81) and (82)
is positive.

Conclusion

A local elastic stability criterion for NLC is derived by calculating the minima of second variation of free energy
functional over the manifold (69). The constraint that the length of the director is unity is satisfied till O(e?).
The local stability criteria reduces to the condition that the minimum eigen value of system of equations (81)
and (82) is positive. The form of equations differs slightly from what derived by [Rosso et al., 2004].
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Figures

Side View Top View

E<E, E>E,

Figure 1: The schematic diagram for Freedericksz’s tranistion. FE is the electric field and n is the director.

Source: Wikipedia

Figure 2: Schematic representation of (a) the uniform splay-Freedericksz’s transition and (b) the periodic

splay-twist distortion. Source:[Lonberg and Meyer, 1985]
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